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In this article we derive upper bounds on the decoder error probability for Reed-
Solomon codes. By definition, “decoder error” occurs when the decoder finds a code-
word other than the transmitted codeword, this is in contrast to “decoder failure,” which
occurs when the decoder fails to find any codeword at all. Our results imply, for example,
that for a t error-correcting Reed-Solomon code of length q - 1 over GF( q), if more than
t errors occur, the probability of decoder error is less than 1/t!. In particular, for the
Voyager Reed-Solomon code, the probability of decoder error given a word error is
smaller than 3 X 10~14. Thus, in a typical operating region with probabiliy 10~ of word
error, the probability of undetected word error is about 10-19.

l. Introduction

Deep Space missions, including Voyager, use error-correct-
ing codes to allow very low probability of error in messages
from the spacecraft to earth, even though signal-to-noise
* ratios are very low. One of the digital coding schemes used by
Voyager is shown in Fig. 1. This scheme allows a bit-error rate
as low as 10—% with a bit signal-to-noise ratio Eb/N0 as low as
2.3 dB.

Besides low decoder bit-error rate, we would like a system
with very low probability of undetected error. That means
that, in case there are bit errors in a certain region, we would
like to know that. (Of course, knowing exactly where the bit
errors are is equivalent to having no bit errors, which is impos-
sible. But we would like to know that a certain string of bits
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contains errors or, preferably, that it is very unlikely to con-
tain errors.)

Our Reed-Solomon code is a (255,223) 8-bit code. This
means that bits are arranged in symbols of 8 bits each, which
are in turn arranged in words of 255 symbols, of which 223
symbols are information and the other 32 are parity. Whenever
our decoders detect 16 or fewer symbol errors, they correct
these errors. But if the string going into the decoder differs
from every codeword in at least 17 symbols, we are able to
detect this, and we know that many symbols (and therefore
many bits) in the word are in error. We would like to know the
probability that, in the fairly rare instance that 17 or more
symbol errors are made, the decoder makes further correction
and therefore incorrectly reports successful decoding. This
article shows that this probability is less than 3 X 10~14.




Let C be an (n, k) code over GF(g), with minimum dis-
tance d. We assume C is being used to correct ¢ errors, where ¢
is a fixed integer satisfying 2¢ < d - 1. We further assume the
decoder is a bounded distance decoder, i.e., it looks for a
codeword within distance ¢ of the received word; if there is
such a codeword, the decoder finds it, and if not, the decoder
reports “failure.”

If the transmitted codeword suffers ¢ or fewer errors, it will
be decoded correctly. If, on the other hand, it suffers more
than ¢ errors, one of two things can happen. Either the decoder
will fail to find a codeword (decoder failure), or it will find a
codeword other than the transmitted codeword (decoder
error). We denote by P and Py the probabilities of decoder
failure and error, respectively. Of course if the number of
errors is ¢ or less, P = Pp = 0. If the number of errors exceeds
t, but is less than d - ¢, then Pr = 1 and Pg = 0, since fewer
than d ~ ¢ errors occuring cannot move the transmitted code-
word to within distance 7 of another codeword.

If d - t or more errors occur, it is in general quite difficult
to calculate, or even estimate, Py and Py, although if the code
is being used in a practical communications system, it is impor-
tant to do so. A useful heuristic estimate can be based on the
assumption that if at least d — ¢ errors occur, the error pattern
can be treated as if it were completely random. The probabil-
ity that a completely random error pattern will cause decoder
error (i.e., lie within distance ¢ of a nonzero codeword) is given
by
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is the volume of a Hamming sphere of radius ¢. This argument
leads to the following estimate for Py

P.~Q- Pr{=d -t errors} (3)

It is difficult to justify this estimate in general, but in this
article we will see that if we increase Q slightly by defining

Q' as

Q' =@-n7"r,® 4)

then for Reed-Solomon codes,
PE<Q' *Pr{>d - terrors} )

In fact Eq. (5) will follow from more detailed results, which
we now describe.

If g, denotes the probability that the error pattern has
weight u, then plainly

P, = Z P.(w)q, (6a)
u=0
P, =3 Paq, (6b)

u=0

where P () and Py (1) denote the conditional probabilities of
decoder error and failure, respectively, given u channel errors.
As mentioned above, we have Py (¥) =P () =0 foru < tand
Po(u)=0,P(u)=1 for t <u<d-t Foru=d-twehave
Pp(u) + Pg(u) = 1, and so if Pg(u) is known, P () can be
calculated, and vice versa.

Here is our main result. Let C be an (n, k) Reed-Solomon,
or any other maximum distance separable (MDS) code, with
minimum distance d = n - k + 1. We assume as above that the
code is being used to correct ¢ errors, for some fixed value of ¢
with 2¢ <d - 1. We further assume that the code is being used
on a channel for which all error patterns of the same weight
are equiprobable, for example, a g-ary symmetric channel.
Under these assumptions, we shall prove in Section I1I that

Pow) =0 forusd-r-1 (7a)

Pw)<(¢-D7" Y (’:) (q-1)° ford—t<u<d-1

s=d-u

(7b)

P.(u)< Q' foruxzd (70)

Of course Eq. (7a) needs na further proof; it is included only
to make the bounds in Eq. (7) apply to all values of u. The
bound (7b) actually follows from a slightly sharper, but more
complicated bound on Pg(u) that appears in Section IIl as

Eq. (15).
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We can combine Egs. (7b) and (7c), at the cost of weaken-
ing Eq. (7b) slightly, to obtain an upper bound on Pg (1)
which is uniform inu foru=d - t:

P w)<Q' foru>d-t (8)
The ratio of this uniform bound Q' to the heuristic estimate
@ in Eq. (1) is usually very close to 1, and is always less than
(g/(g-1))", which for n<¢g -1 cannotexceed e=2.718 . ...
In any event, combining Eq. (6a) with (7a) and (8), we obtain
the bound (5).

Although as a practical matter it is not hard to compute
the bound Q' numerically, for some applications it may be
worthwhile to have a simpler, though weaker, bound. In the
Appendix, we show that Eq. (8) implies that provided n <
qg-1,forallu=d~t,
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Since r = 2¢ in all cases, Eq. (9) implies, whenever n << g ~ 1,

(10)

PE(u)<t—l! forallu=>z+1

Kasami and Lin (Ref. 2) have also studied the problém of
decoder error for Reed-Solomon codes. They showed that on a
g-ary symmetric channel Py is at most @, i.e., that

h

P AD) (Z) e“(1-€e)"*<Q

u=d-t
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where e is the probability of channel symbol error. They fur-
ther showed that P, = Q only when € = (g -~ 1)/q, i.e., when
the error pattern is completely random. This shows that Q is
the tightest possible bound on the sum in Eq. (11) which is
independent of €. However, except when the probabilitity of
Z d - t errors is very nearly 1, our bound (5) will be smaller
than Kasami and Lin’s bound (11). And since most well-
designed systems will have Pr{u = d ~ ¢} << 1, we conclude
that our bound is likely to be more useful in practice than
Kasami and Lin’s.

Finally we note that since with € = (g - 1)/g equality
holds in Eq. (11), the average of the Pg (u)’s with respect to
one particular probability distribution is Q. Since Py (u) is 0
for u < d - t, it follows that for some values of u, Py (1) > Q.
Thus the conjecture that Py (1) < Q for all u isn’t tenable.
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(It would be nice to have a uniform lower bound on the
Pp(u)’s, but we have been unable to find one.)

ll. Preliminaries

In this section we will review some known results about
MDS codes which are needed in our proof. Our remarks will
be self-contained, but proofs may also be found in Ref. 4,
Chapter 11.

Let C be a code, not necessarily linear, of length n with
q* codewords over GF(g). If we examine any set of k - 1
components of the codewords, we find that there are only
q¥*-1 possibilities for the g¥ codewords. Thus there must be a
pair of codewords which agree on these k£ —~ 1 components, and
so the minimum distance d of the code must satisfy d <
n -k+1.Acode for whichd=n -k + 1 is called a maximum-
distance separable (MDS) code. By this definition, Reed-
Solomon codes and cosets of Reed-Solomon codes are MDS
codes.

Let K be a subset of k¥ coordinate positions of an MDS
code. If two codewords were equal on K, the distance between
them would be at most #n — k. But this is impossible, since
d=n -k +1.We conclude that all g% codewords are different
on K, and so, for any possible k-tuple of elements from GF(q),
say @ = (&, @,, ..., o), there is a unique codeword, which,
when restricted to K, equals a, This important fact we call the
basic combinatorial property of MDS codes.

We now wish to estimate the number of codewords of
weight u, for u 2 d, in an MDS code. A word of weight # must
vanish on a set of v =n ~u coordinates. Thus let V" be an arbi-
trary subset of v coordinates. We will estimate the number of
codewords that vanish on V. Since u = d, then » <k - 1. Thus
by the basic combinatorial property, if we specify that the
codeword is zero exactly on V, we may specify (k - v) other,
nonzero, components arbitrarily. There are (g - 1)*-v =
(g - 1)¥~* ways to do this, and so there are at most (g ~ 1)#-*
codewords that vanish exactly on V., Since there are ( f}') = ( Z )
possibilities for ¥, if 4, denotes the number of codewords of
weight ¥, we have:

4,< (Z) (@-14"  foru>d (12)

Next we let V be a subset of v coordinate positions, where
v 2 k. If we project the original code onto V, the result will be
a certain (v,%) code. Since the parent (n,k) code has d =
n -k + 1, the new code must have distance d’' > d - (n -v) =
v — k + 1. Since it is impossible for d' to be greater than
v - k + 1, equality must hold and it follows that the projected




code is a (v, k) MDS code. This simple fact will be referred to
in the proof in the next section.

lll. Proof of Results

We call a word, not necessarily a codeword, decodable if it
lies within distance ¢ of some codeword. If D, denotes the
number of decodable words of weight u, then for u = ¢ + 1,
we have, assuming that all error patterns of weight u are
equiprobable,

(13)

Thus the problem of finding the Pg (#)’s is essentially the same
as that of finding the weight enumerator for the set of decod-
able words. For example, Eq. (7¢) is equivalent to

D <(Z)(q—1)“" v.() foru>d (14)

u

The plan is to obtain upper bounds on D, which will imply
our various bounds on Pg(1). We need to distinguish two
cases,u =dandu<d-1.

First we assume # 2 d. Each decodable word can be written
uniquely as C + E, where C is a codeword and E is a word of
weight <. For a fixed E, as C runs through the set of code-
words, {C + E'} is a coset of the RS code. Since any coset of
a RS code is an MDS code, by Eq. (12) we know that the num-
ber of words of weight w is less than or equal to (Z )(q - 1)u-r,
since we are assuming # = d. Since the set of decodable words
is the disjoint union of V,(#) cosets of the RS code, Eq. (14)
(and therefore Eq. [7c]) follows.

Now we assume that u < d - 1. A decodable word of
weight u will vanish on a set of size v =n - u. For each of the
(Z) subsets ¥ of v coordinates, we will obtain an upper bound
on the number of decodable words of weight u that vanish on
V. This upper bound will imply Eq. (7b).

As before, we will use the fact that each decodable word is
of the form C + £, where C'is a codeword and £ has weight = ¢.
If the sum C + £ vanishes on V, then C' must have weight <¢
on V, say weight w. We note that w = 0 isn’t possible, since
u =2 t + 1. By our remarks in Section II, we know that C
restricted to ¥ is a linear (v, k) MDS code, and so its minimum
weight (distance) is d - u. Thus w, the weight of C on V,
satisfies d - u < w < ¢, (If d - u > ¢, there are no such words;
this gives another proof of Eq. [7a].) By Eq. (12), it follows

that the number of codewords with weight w on V is at most
(:}) (@ - )¥-", where ' = r - u is the redundancy of the
restricted code.

For each codeword C with weight w in V, we must count
the number of £’s such that C + E vanishes on V. Suppose that
E has weights s 2 w. On V, E must match C exactly, but the
(s = w) other nonzero components can be arbitrarily placed
outside V. Thus the total number of £’s, for a given C of
weight w, is

}: (“,) @-v

Therefore the total number of decodable words vanishing on ¥
is at most
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This is a bound on the number of decodable words of weight u
vanishing on V. If we multiply it by the number of possible
subsets V' with v elements, viz. (’:) = (Z) we obtain a bound on
D,,, and hence by Eq. (13),

t
P@w<@-D" Y @-1°

s=d-—u

(15)

This bound is a bit clumsy for everyday use, but we note in
passing that for ¥ = d — ¢ (the smallest value of u for which
P (u) isn’t 0) it simplifies to

(16)

~(d-t-1) (1 —d""f)
P.(@-H<(@-1) ("

which is in fact the exact value of P (1) in this case (Ref. 1).

Finally, we simplify the bound (15) by recalling a well-
known combinatorial identity (Ref. 3, Eq. [1.2.6.21]):
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Since v + u = n, this means that the inner sum in Eq. (15) is at
most ('; ),and so Eq. (7b) follows from Eq. (15).

IV. Numerical Results

Using Eq. (8) we are able to compute an upper bound to
the probability of undetected error, given that a word has
more than ¢ errors. In the case of the Voyager Reed-Solomon
code, this gives an upper bound of 2.97 X 10-14, Better

bounds depend on knowing the error probability so that the
expected number of errors can be taken into account. For
example, the probability of undetected error, given that a
word has exactly 17 errors (the smallest number that the
code is unable to decode correctly) is 1.09 X 10-14 (see
Eq. [16]). This means that at a low error rate, when most
words which fail to decode have exactly 17 errors, the prob-
ability of undetected word error given that a word fails to
decode correctly, can be as low as 1.1 X 1014, In any case,
we have very good confidence in those words which do
decode.
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Fig. 1. A digital data coding scheme
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Appendix

In this appendix we will derive several useful approxima-
tions to the bound Q' that appears in Eq. (8). In fact all of
our results will follow from bounds on the binomial sum
V, (t) defined in Eq. (2).

It follows from results in Ref. 5 (Appendix A, Egs. [A-5]
and [A-9]) that

v.(H< (A-1)

G0 =D () -

provided the denominator within the braces is positive. (This
will certainly be the case in our application, since 27 + 1 <
n and q 2 2.) Now if we assume that » < g (which holds for
all RS codes and all but a few exotic MDS codes described in
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Chapter 11 of Ref. 4), the term within the braces will be
< (n + 1)/ n. Thus we have

v, 0<t=(7) @ -1 (42)

n

Since (n + 1)(n - 1) <n?, it follows from Eq. (A-2) that

T
v, (1) <?—,'(q 1), fort=2 (A-3)

If n < gq - 1, the bound (A-3) immediately implies Eq. (9)
for t=>2. The case ¢ = 1 in Eq. (9) must be handled separately,
and follows from the fact that V,, (1) =1 +n(g - 1) is less than
orequalto 1 +(g ~1)2,ifn<q - 1.




